Indoor Marijuana Seeds

How To Grow Marijuana Indoors Guide

  • Stealth Grow Boxes shipping within US, Grow Indoors
  • SIMPLY CLICK ON PRODUCT IMAGE TO BUY
  • PC Planter
  • PC Planter
  • $ 599
  • 8.1" tall x 20.6" wide x 18.6" deep

  • Mini Mortgage Lifter Grow Tent Hydroponics
  • Mini Mortgage Lifter Grow Tent Hydroponics
  • $ 1750.00
  • Complete 19 Plant Hydroponics System With 600w of HID power and enclosed in a 7" tall x 4" wide x 4" deep tent.

  • Tomato Tent Soil
  • Tomato Tent Soil
  • $ 1499.99
  • Complete 8 Plant Soil System With 400w of HID power and enclosed in a 6.5" tall x 4" wide x 2" deep tent.

  • Tomato Tent Hydroponics
  • Tomato Tent Hydroponics
  • $ 1599.99
  • Complete 10 Plant Hydroponics System With 400w of HID power and enclosed in a 6.5" tall x 4" wide x 2" deep tent.

  • Mini Cool Cab
  • Mini Cool Cab
  • $ 1599.00
  • 42" tall x 36" wide x 18" deep

  • Cool Cab Exterior Chamber
  • Cool Cab Exterior Chamber
  • $ 1799.00
  • 72" tall x 36" wide x 18" deep

  • Mortgage Lifter Grow Tent Soil
  • Mortgage Lifter Grow Tent Soil
  • $ 1749.99
  • Complete 32 Plant SOIL System With 1,000w of HID power and enclosed in a 7" tall x 8" wide x 4" deep tent.

Choosing a space to grow

Choosing a space for growing marijuana indoors is just as important as choosing the proper space outdoors. Your growroom should be located in an out of the way place (not the bedroom). Basements, attics, and closets are all great places. Once you have a few possibilities in mind make sure they have access to electrical outlets. Plan ahead for anything that might require a repairman to visit your house. Once the location has been selected it is time to prepare it. Paint the walls flat white. Do not use tin foil because it can actually focus light like little laser beams and burn holes through the leaves. Cover the floor of the room with plastic. This will help stop water damage to the floor if it spill.

The space should be vented. Opening the door of a closet can be enough ventilation if the space is not lit by big lights that generate a lot of heat. Separate exhaust and incoming air vents are best. One at the top of the room to exhaust air into the attic or out the roof, and one to bring in air from an outside wall or under-floor crawl space. Use fans from old computer cabinets, available from electronic liquidators for $5 each. Dimmer switches can be used to regulate the speed/noise of the fans. Use silicon to secure the fans to 4-6" PVC pipe pushed through a round hole cut in the floor and ceilings. Use lots of silicon to damp the fans vibrations, so that the walls do not resonate to the fans' ocsilations.

A shelf above the main grow area can be used to clone cuttings and germinate seedlings. It will allow you to double the area of your grow space and is an invaluable storage area for plant food, spray bottles and other gardening supplies. This area stays very warm, and no germination warming pad will be needed, so this arrangement saves you cash.

Hang a light proof curtain to separate this shelf from the main area when used for flowering. This will allow constant lights on the shelf and dark periods in the main grow area.

Soil

Use the best soil you can get. Scrimping on the soil doesn't pay off in the long run. If you use unsterilized soil you will almost certainly find parasites in it, probably after it is too late to transplant your marijuana. You can find excellent soil for sale at your local plant shop or nursery and even some grocery stores. The soil you use should have these properties for the best possible results: It should drain well. That is, it should have some sand in it and also some sponge rock or pearlite. The ph should be between 6.5 and 7.5 since marijuana does not do well in acidic soil. High acidity in soil encourages the plant to be predominantly male, an undesirable trait. The soil should also contain humus for retaining moisture and nutrients.

If you want to make your own soil mixture, you can use this recipe: Mix two parts moss with one part sand and one part pearlite or sponge rock to each four gallons of soil. Test your soil for ph with litmus paper or with a soil testing kit available at most plant stores. To raise the ph of the soil, add 1/2 lb. lime to 1 cubic foot of soil to raise the ph one point. If you absolutely insist on using dirt you dug up from your driveway, you must sterilize it by baking it in your oven for about an hour at 250 degrees. Be sure to moisten it thoroughly first and also prepare yourself for a rapid evacuation of your kitchen because that hot soil is going to stink. Now add to the mixture about one tablespoon of fertilizer (like Rapid-Gro) per gallon gallon of soil and blend it in thoroughly. Better yet, just skip the whole process and spend a couple bucks on some soil.

Top




Hydroponics

Most growers report that a hydroponic system will grow plants faster than a soil medium, given the same genetics and environmental conditions. This may be due to closer attention and more control of nutrients, and more access to oxygen. The plants can breath easier, and therefor, take less time to grow. One report has it that plants started in soil matured after hydroponic plants started 2 weeks later!

Fast growth allows for earlier maturation and shorter total growing time per crop. Also, with soil mixtures, plant growth tends to slow when the plants become root-bound. Hydroponics provides even, rapid growth with no pauses for transplant shock and eliminates the labor/materials of repotting if rockwool is used.

By far the easiest hydroponic systems to use are the wick and reservoir systems. These are referred to as Passive Hydroponic methods, because they require no water distribution system on an active scale (pump, drain, flow meter and path). The basis of these systems is that water will wick to where you want it if the medium and conditions are correct.

The wick system is more involved than the reservoir system, since the wicks must be cut and placed in the pots, correct holes must be cut in the pots, and a spacer must be created to place the plants up above the water reservoir below. This can be as simple as two buckets, one fit inside the other, or a kiddie pool with bricks in it that the pots rest on, elevating them out of the nutrient solution.

I find the wick setup to be more work than the reservoir system. Initial setup is a pain with wicks, and the plants sit higher in the room, taking up precious vertical space. The base the pot sits on may not be very stable compared to a reservoir system, and a knocked over plant will never be the same as an untouched plant, due to stress and shock in recovery.

The reservoir system needs only a good medium suited to the task, and a pan to sit a pot in. If rockwool slabs are used, a half slab of 12" rockwool fits perfectly into a kitty litter pan. The roots spread out in very desirable horizontal fashion and have a lot of room to grow. Plants grown in this manner are very robust because they get a great deal of oxygen at the roots. Plants grown with reservoir hydroponics grow at about the same rate as wicks or other active hydroponic methods, with much less effort required, since it is by far the simplest of hydroponic methods. Plants can be watered and feed by merely pouring solution into the reservoir every few days. The pans take up very little vertical space and are easy to handle and move around.

In a traditional hydroponic method, pots are filled with lava/ vermiculite mix of 4 to 1. Dolite Lime is added, one Tblspn. per gallon of growing medium. This medium will wick and store water, but has excellent drainage and air storage capacity as well. It is however, not very reusable, as it is difficult to recapture and sterilize after harvest. Use small size lava, 3/8" pea size, and rinse the dust off it, over and over, until most of it is gone. Wet the vermiculite (dangerous dry, wear a mask) and mix into pots. Square pots hold more than round. Vermiculite will settle to bottom after repeated watering from the top, so only water from the top occasionally to leach any mineral deposits, and put more vermiculite on the top than the bottom. Punch holes in the bottom of the pots, and add water to the pan. It will be wicked up to the roots and the plants will have all they need to flourish.

Top




The reservoir is filled with 1 1/2 - 3 inches of water and allowed to recede between waterings. When possible, use less solution and water more often, to pull more oxygen to the roots faster over time. If you go away on vacation, simply fill the reservoirs full to the top, and the plants will be watered for 2 weeks at least.

One really great hydroponic medium is Oasis floral foam. Stick lots of holes into it to open it up a little, and start plants/clones in it, moving the cube of foam to rockwool later for larger growth stages. Many prefer floral foam, as it is inert, and adds no PH factors. It's expensive though, and tends to crumble easily. I'm also not sure it's very reusable, but it seems to be a popular item at the indoor gardening centers.

Planting can be made easier with hydroponic mediums that require little setup such as rockwool. Rockwool cubes can be reused several times, and are premade to use for hydroponics. Some advantages of rockwool are that it is impossible to over water and there is no transplanting. Just place the plant's cube on top of a larger rockwool cube and enjoy your extra leisure time.

Some find it best to save money by not buying rockwool and spending time planting in soil or hydroponic mediums such as vermiculite/lava mix. Pearlite is nice, since it is so light. Pearlite can be used instead of or in addition to lava, which must be rinsed and is much heavier.

But rockwool has many advantages that are not appreciated until you spend hours repotting; take a second look. It is not very expensive, and it is reusable. It's more stable than floral foam, which crunches and powders easily. Rockwool holds 10 times more water than soil, yet is impossible to over-water, because it always retains a high percentage of air. Best of all, there is no transplanting; just place a starter cube into a rockwool grow cube, and when the plant gets very large, place that cube on a rockwool slab. Since rockwool is easily reused over and over, the cost is divided by 3 or 4 crops, and ends up costing no more than vermiculite and lava, which is much more difficult to reclaim, sterilize and reuse (repot) when compared to rockwool. Vermiculite is also very dangerous when dry, and ends up getting in the carpet and into the air when you touch it (even wet), since it drys on the fingers and becomes airborne. For this reason, I do not recommend vermiculite indoors.

Rockwool's disadvantages are relatively few. It is alkaline PH, so you must use something in the nutrient solution to make it acidic (5.5) so that it brings the rockwool down from 7.7, to 6.5 (vinagar works great.) And it is irritating to the skin when dry, but is not a problem when wet.

To pre-treat rockwool for planting, soak it in a solution of fish emulsion, trace mineral solution and phosphoresic acid (PH Down) for 24 hours, then rinse. This will decrease the need for PH worries later on, as it buffers the rockwool PH to be fairly neutral.

Hydroponics should be used indoors or in greenhouses to speed the growth of plants, so you have more bud in less time. Hydroponics allows you to water the plants daily, and this will speed growth. The main difference between hydroponics and soil growing is that the hydroponic soil or "medium"is made to hold moisture, but drain well, so that there are no over-watering problems associated with continuous watering. Also, hydroponically grown plants do not derive nutrients from soil, but from the solution used to water the plants. Hydroponics reduces worries about mineral buildup in soil, and lack of oxygen to suffocating roots, so leaching is usually not necessary with hydroponics.

Hydroponics allows you to use smaller containers for the same given size plant, when compared to growing in soil. A 3/4 gallon pot can easily take a small hydroponically grown plant to maturity. This would be difficult to do in soil, since nutrients are soon used up and roots become cut-off from oxygen as they become root-bound in soil. This problem does not seem to occur nearly as quickly for hydroponic plants, since the roots can still take up nutrients from the constant solution feedings, and the medium passes on oxygen much more readily when the roots become bound in the small container.

Top




Plant food is administered with most waterings, and allows the gardener to strictly control what nutrients are available to the plants at the different stages of plant growth. Watering can be automated to some degree with simple and cheap drip system apparatus, so take advantage of this when possible.

Hydroponics will hasten growing time, so it takes less time to harvest after planting. It makes sense to use simple passive hydroponic techniques when possible. Hydroponics may not be desirable if your growing outdoors, unless you have a greenhouse.

CAUTION!: It is necessary to keep close watch of plants to be sure they are never allowed to dry too much when growing hydroponically, or roots will be damaged. If you will not be able to tend to the garden every day, be sure the pans are filled enough to last until next time you return, or you can easily lose your crop.

More traditional hydroponic methods (active) are not discussed here. I don't see any point in making it more difficult than it needs to be. It is necessary to change the solution every month if your circulating it with a pump, but the reservoir system does away with this problem. Just rinse the medium once a month or so to prevent salts build up by watering from the top of the pot or rockwool cube with pure water. Change plant foods often to avoid deficiencies in the plants. I recommend using 2 different plant foods for each phase of growth, or 4 foods total, to lessen chances of any type of deficiency.

Change the solution more often if you notice the PH is going down quickly (too acid). Due to cationic exchange, solution will tend to get too acid over time, and this will cause nutrients to become unavailable to the plants. Check PH of the medium every time you water to be sure no PH issues are occurring.

Algae will tend to grow on the medium with higher humidities in hydroponics. It will turn a slab of rockwool dark green. To prevent this, use the plastic cover the rockwool came in to cover rockwool slab tops, with holes cut for the plants to stick out of it. It's easy to cut a packaged slab of rockwool into two pieces, then cut the end of the plastic off each piece. You now have two pieces of slab, each covered with plastic except on the very ends. Now cut 2 or 3 4" square holes in the top to place cubes on it, and place each piece in a clean litter pan. Now your ready to treat the rockwool as described above in anticipation of planting.

If growing in pots, a layer of gravel at the top of a pot may help reduce algae growth, since it will dry very quickly. Algae is merely messy and unsightly; it will not actually cause any complications with the plants.

Top




Light

Without light, the plants cannot grow. In the countries in which marijuana grows best, the sun is the source of light. The amount of light and the length of the growing season in these countries results in huge tree-like plants. In most parts of North America, however, the sun is not generally intense enough for long enough periods of time to produce the same size and quality of plants that grow with ease in Latin America and other tropical countries. The answer to the problem of lack of sun, especially in the winter months, shortness of the growing season, and other problems is growing marijuana indoors under simulated conditions. The rule of thumb seems to be the more light, the better. There are many types of artificial light and all of them do different things to your plants. The common incandescent light bulb emits some of the frequencies of light the plant can use, but it also emits a high percentage of far red and infra-red light which cause the plant to concentrate its growth on the stem. This results in the plant stretching toward the light bulb until it becomes so tall and spindly that it just weakly topples over. There are several brands of bulb type. One is the incandescent plant spot light which emits higher amounts of red and blue light than the common light bulb. It is an improvement, but has it drawbacks. It is hot, for example, and cannot be placed close to the plants. Consequently, the plant has to stretch upwards again and is in danger of becoming elongated and falling over. The red bands of light seem to encourage stem growth which is not desirable in growing marijuana. the idea is to encourage foliage growth for obvious reasons. Gro-Lux lights are probably the most common fluorescent plant lights. In our experience with them, they have proven themselves to be extremely effective. They range in size from one to eight feet in length so you can set up a growing room in a closet or a warehouse. There are two types of Gro-Lux lights: The standard and the wide spectrum. They can be used in conjunction with on another, but the wide spectrum lights are not sufficient on their own. The wide spectrum lights were designed as a supplementary light source and are cheaper than the standard lights. Wide spectrum lights emit the same bands of light as the standard but the standard emit higher concentrations of red and blue bands that the plants need to grow. The wide spectrum lights also emit infra-red, the effect of which on stem growth we have already discussed. If you are planning to grow on a large scale, you might be interested to know that the regular fluorescent lamps and fixtures, the type that are used in commercial lighting, work well when used along with standard Gro- Lux lights. These commercial lights are called cool whites, and are the cheapest of the fluorescent lights we have mentioned. They emit as much blue light as the Gro-Lux standards and the blue light is what the plants use in foliage growth.

  • Best Selling LED Lamps:
  • SIMPLY CLICK ON PRODUCT IMAGE TO BUY
  • LED UFO 90 Watts
  • LED UFO 90 Watts
  • $ 199.99
  • Each light contains 90 x 1 watt LEDs, 7:1:1 red/blue/orange ratio
    • Precision red LEDs (flowering)
    • Precision blue LEDs (vegetation)
    • Precision orange LED's (mid-spectrum)
  • Built-in, ballast-free, power supply. Three low-noise fans. Operates on 120 volts; standard 3-prong cord included. Built-in lugs for easy mounting.
  • Weight: 8 lbs.
  • Click here for more grow equipment

Top




Now we come to the question of intensity. Both the standard and wide spectrum lamps come in three intensities: regular output, high output, and very high output. You can grow a nice crop of plants under the regular output lamps and probably be quite satisfied with our results. The difference in using the HO or VHO lamps is the time it takes to grow a crop. Under a VHO lamp, the plants grow at a rate that is about three times the rate at which they grow under the standard lamps. People have been known to get a plant that is four feet tall in two months under one of these lights. Under the VHO lights, one may have to raise the lights every day which means a growth rate of ate least two inches a day. The only drawback is the expense of the VHO lamps and fixtures. The VHO lamps and fixtures are almost twice the price of the standard. If you are interested in our opinion, they are well worth it. Now that you have your lights up, you might be curious about the amount of light to give you plants per day. The maturation date of your plants is dependent on how much light they receive per day. The longer the dark period per day, the sooner the plant will bloom. Generally speaking, the less dark per day the better during the first six months of the plant's life. The older the plant is before it blooms and goes to seed, the better the grass will be. After the plant is allowed to bloom, its metabolic rate is slowed so that the plant's quality does not increase with the age at the same rate it did before it bloomed. The idea, then, is to let the plant get as old as possible before allowing it to mature so that the potency will be a high as possible at the time of harvest. One relatively sure way to keep your plants from blooming until you are ready for them is to leave the lights on all the time. Occasionally a plant will go ahead and bloom anyway, but it is the exception rather than the rule. If your plants receive 12 hours of light per day they will probably mature in 2 to 2.5 months. If they get 16 hours of light per day they will probably be blooming in 3.5 to 4 months. With 18 hours of light per day, they will flower in 4.5 to 5 months. Its a good idea to put your lights on a timer to ensure that the amount of light received each day remains constant. A "vacation" timer, normally used to make it look like you are home while you are away, works nicely and can be found at most hardware or discount stores.

Since there is no sun in your closet you will have to provide a sun loving plant like marijuana with a lot of artificial light. There are three options available to the grower: fluorescent lights are cheap, efficient, and don't put out much heat. Metal halide, or MH bulbs, are more expensive but put out much more light than fluorescents. They also put out more heat so ventilation is needed. MH bulbs also require a separate ballast in order to work. High Pressure Sodium lamps, or HPS, put out as much light as MH lamps but with a little less heat. Ventilation and a separate ballast are also required.

fluorescent lights
fluorescent lights are the cheapest light to use. They run at about $2 a tube. They produce little heat so ventilation may not be needed unless the space is very small. The light spectrum put out by these lights is suitable for all stages of growing. Because fluorescents disperse light over a large area, they need to be kept within three inches of the tops for the plants to receive enough light. This means you will have to mount the lights in a way that the can be raised everyday.

Metal Halide Lights
Metal halide lamps put out the most light. They also produce a lot of heat. A strong fan is needed to keep room temperatures down. MH lamps put out light mostly in the blue spectrum. Blue light is used best by the plant during vegetative growth. MH lights can also be used for flowering with no adverse effects. A separate ballast is required for these lights to work. They come in sizes from 40 to 1000W. One 1000W lamp will provide enough light in a closet to grow four plants.

High Pressure Sodium Lights
High pressure sodium lamps put out almost as much light as MH and with less heat. Good ventilation is still required though. HPS lamps produce light in mostly the red and orange end of the spectrum. The plants uses this light best when flowering. HPS lamps can also be used for vegetative growth with little slow down in foliage production. HPS lamps require a separate ballast for operation.

Some growers switch between MH and HPS depending on what stage the plants are in. MH is used in vegetative growth and then the light is switched over to HPS once flowering begins. Most growers use fluorescents to start seedlings and root clones. The fluorescents are weaker than the MH and HPS lamps and therefore do not stress them too much. Choose whatever light is best suited for your situation. If your are growing in your attic go with MH or HPS. If your growing in the closet like us, then use flourecents.

Top




Fertilizers

Marijuana likes lots of food, but you can do damage to the plants if you are too zealous. Some fertilizers can burn a plant and damage its roots if used in to high a concentration. Most commercial soil will have enough nutrients in it to sustain the plant for about three weeks of growth so you don't need to worry about feeding your plant until the end of the third week. The most important thing to remember is to introduce the fertilizer concentration to the plant gradually. Start with a fairly diluted fertilizer solution and gradually increase the dosage. There are several good marijuana fertilizers on the commercial market, two of which are Rapid-Gro and Eco-Grow. Rapid-Gro has had widespread use in marijuana cultivation and is available in most parts of the United States. Eco-Grow is also especially good for marijuana since it contains an ingredient that keeps the soil from becoming acid. Most fertilizers cause a ph change in the soil. Adding fertilizer to the soil almost always results in a more acidic ph.

As time goes on, the amount of salts produced by the breakdown of fertilizers in the soil causes the soil to become increasingly acidic and eventually the concentration of these salts in the soil will stunt the plant and cause browning out of the foliage. Also, as the plant gets older its roots become less effective in bringing food to the leaves. To avoid the accumulation of these salts in your soil and to ensure that your plant is getting all of the food it needs you can begin leaf feeding your plant at the age of about 1.5 months. Dissolve the fertilizer in worm water and spray the mixture directly onto the foliage. The leaves absorb the fertilizer into their veins. If you want to continue to put fertilizer into the soil as well as leaf feeding, be sure not to overdose your plants.

Remember to increase the amount of food your plant receives gradually. Marijuana seems to be able to take as much fertilizer as you want to give it as long as it is introduced over a period of time. During the first three months or so, fertilize your plants every few days. As the rate of foliage growth slows down in the plant's preparation for blooming and seed production, the fertilizer intake of the plant should be slowed down as well. Never fertilize the plant just before you are going to harvest it since the fertilizer will encourage foliage production and slow down resin production. A word here about the most organic of fertilizers: worm castings. As you may know, worms are raised commercially for sale to gardeners. The breeders put the worms in organic compost mixtures and while the worms are reproducing they eat the organic matter and expel some of the best marijuana food around. After the worms have eaten all the organic matter in the compost, they are removed and sold and the remains are then sold as worm castings. These castings are so rich that you can grow marijuana in straight worm castings. This isn't really necessary however, and it is somewhat impractical since the castings are very expensive. If you can afford them you can, however, blend them in with your soil and they will make a very good organic fertilizer.

Top




CO2

Some growers add C02 to their grow rooms to increase growth rate. This has proved itself to be effective in many experiments. C02 supplementation also helps the plants withstand higher temperatures of up to 95 degrees without slowing down growth. There have been complaints however, that C02 supplementation during flowering reduces potency. Therefore, C02 should be stopped when the lights are turned to 12/12.

Elevating carbon dioxide levels can increase growth speed a great deal, perhaps even double it. It seems that the plant evolved in primordial times when natural CO2 levels were many times what they are today. The plant uses CO2 for photosynthesis to create sugars it uses to build plant tissues. Elevating the CO2 level will increase the plants ability to manufacture these sugars and plant growth rate is enhanced considerably.

CO2 can be a pain to manufacture safely, cheaply, and/or conveniently, and is expensive to set up if you use a CO2 tank system. CO2 is most usable for flowering, as this is when the plant is most dense and has the hardest time circulating air around its leaves. If your strictly growing vegetatively indoors, (transferring your plants outdoors to flower), then CO2 will not be a major concern unless you have a sealed greenhouse, closet or bedroom, and wish to increase yield and decrease flowering time.

For a medium sized indoor operation, one approach is to used CO2 canisters from wielding supply houses. This is expensive initially, but fairly inexpensive in the long run. These systems are good only if your area is not too big or too small.

The basic CO2 tank system looks like this:

20 lb tank $99
Regulator $149
Timer or controller $10-125
Fill up $15-20

Worst case = $395 for CO2 tank setup synced to a exhaust fan with a thermostat.

CO2 is cheaply produced by burning Natural Gas. However, heat and Carbon Monoxide must be vented to the outside air. CO2 can be obtained by buying or leasing cylinders from local welding supply houses. If asked, you can say you have an old mig welder at home and need to patch up the lawnmower (trailer, car, etc.)

For a small closet, one tank could last 2 months, but it depends on how much is released, how often the room is vented, hours of light cycle, room leaks, enrichment levels and dispersion methods. This method may be overkill for your small closet.

It is generally viewed as good to have a small constant flow of CO2 over the plants at all times the lights are on, dispersed directly over the plants during the time exhaust fans are off.

Opportunities exist to conserve CO2, but this can cost money. When the light is off you don't need CO2, so during flowering, you will use half as much if you have the CO2 solenoid setup to your light timer. When the fan is on for venting, CO2 is shut off as well. This may be up to half the time the light is on, so this will affect the plants exposure times and amount of gas actually dispensed.

Top




Environmentally, using bottled gas is better, since manufacturing it adds to greenhouse effect, and bottled CO2 is captured as part of the manufacturing process of many materials, and then recycled. Fermenting, CO2 generators, and baking soda and vinegar methods all generate new CO2 and add to greenhouse effect.

CO2 generation from fermentation and generators is possible. A simple CO2 generator would be a propane heater. This will work well, as long as the gases can be vented to the grow area, and a fan is used to keep the hot CO2 (that will rise) circulating and available below at the plants level. Fire and exhaust venting of the heat are issues as well. A room that must be vented 50% of the time to rid the environment of heat from a lamp and heater will not receive as much CO2 as a room that can be kept unvented for hours at a time. However, CO2 generators are the only way to go for large operations.

Fermentation or vinegar over baking soda will work if you don't have many vent cycles, but if you have enough heat to make constant or regular venting necessary, these methods become impractical. Just pour the vinegar on baking soda and close the door, (you lose your CO2 as soon as the vent comes on). This method leaves a great deal to be desired, since it is not easy to regulate automatically, and requires daily attention. It is possible however, to create CO2 by fermentation, let the wine turn to vinegar, and pour this on baking soda. It's the most cost-effective setup for most closet growers, for whom $400 in CO2 equipment is a bit much to swallow.

In fermentation, yeast is constantly killing itself; it takes a lot of space. You need a big bin to constantly keep adding water to, so that the alcohol levels will not rise high enough to kill the yeast. Sugar is used quickly this way, and a 10 pound sack will run $3.50 or so and last about 2-3 weeks. This is also difficult to gauge what is happening as far as amounts actually released. A tube out the top going into a jar of water will bubble and demonstrate the amount of CO2 being produced.

Try sodium bicarbonate mixed with vinegar, 1 tsp: ~30cc- this will gush up all frothy as it releases CO2. do it just before you close the door on your plants. A MUCH cheaper way to provide CO2 is 2 Oz sugar in 2 liters of water in a bottle [sterilized 1st with bleach and water, then rinsed], plus a few cc urine[!] or if you insist, yeast nutrient from a home brewing supplier. Add a brewing yeast, shake up and keep at 25 deg celsius[~70 F] . Over next 2 weeks or so it will brew up about 1/2 Oz CO2 for every Oz sugar used. Keep a few going at once, starting a new one every 3 days or so. With added CO2 growth is phenomenal!!! I personally measured 38cm growth in 8 days under a 250watt HPS bulb[tubular clear, Horizontal mount.

A good container is a 1 gallon plastic milk jug, with a pin-hole in the cap. Also, the air-lock from a piece of clear tube running into a jar filled with water will keep microbes out and demonstrate the fermentation is working.

A variation is to spray seltzer water on the plants twice a day. This is not recommended by some authorities, and receives great raves by people who seem to feel it has enhanced their crop. It stands to reason this would work for only a small unvented closet, but may be right for some situations. It could get expensive with a lot of plants to spray. Use seltzer, not club soda, since it contains less sodium that could clog the plants stomata. Wash your plants with straight water after 2 or 3 seltzer sprays. It's a lot of work, and you can't automate it, but maybe that's good! Remember, being with the plants is a beautiful experience, and brings you closer to your spiritual self and the earth. Seltzer is available at most grocery stores (I get it at Lucky's @ .79 for a 2 litter bottle). Club soda will work if seltzer water is not available; but it has twice as much sodium in it. A very diluted solution of Miracle Grow can be sprayed on the plant at the same time. One factor of using seltzer water is it raises humidity levels. Make sure your venting humidity during the dark cycle, or you could risk fungus and increased internode length.

CAUTION!: Don't spray too close to a hot bulb! Spray downward only, or turn off the lamp first.

Even though CO2 enrichment can mean 30-100% yield increases, the hassle, expense, space, danger, and time involved can make constant or near constant venting a desirable alternative to enrichment. As long as the plant has the opportunity to take in new CO2 at all times, from air that is over 200 ppm CO2, the plants will have the required nutrients for photosynthesis. Most closets will need new CO2 coming in every two or three hours, minimum. Most cities will have high concentrations of CO2 in the air, and some growers find CO2 injection unnecessary in these circumstances.

Some growers have reported to High Times that high CO2 levels in the grow room near harvest time lower potency. It may be a good idea to turn off CO2 2 weeks before harvesting.

Top




Ventilation, temperature and humidity

Marijuana like all other plants puts out waste through the stomata on it's leaves. Outdoors wind, rain and sun are present to evaporate these toxins from the leaf surface. But when growing marijuana indoors the grower must create an environment. The best way to do this is with a fan of some kind. If the grow room is large enough then an regular cooling fan can be placed inside and left on all the time. If you are running a small closet operation then just opening the door twice a day to look at them will create enough air movement for healthy growth. A fan controlled by a thermostat will also work well. These can be found at most electronics stores.

If a large number of plants are to be kept a dehumidifier may be needed. If humidity levels are too high then the chances of mold will dramatically increase. A dehumidifier will cost a grower about $100 so it isn't really practical for the closet grower.

When growing marijuana indoors a proper growing room ventilation is fairly important. The more plants you have in one room, the more important good ventilation becomes. Plants breathe through their leaves. The also rid themselves of poisons through their leaves. If proper ventilation is not maintained, the pores of the leaves will become clogged and the leaves will die. If there is a free movement of air, the poisons can evaporate off the leaves and the plant can breathe and remain healthy.

In a small closet where there are only a few plants you can probably create enough air circulation just by opening the door to look at them. Although it is possible to grow healthy looking plants in poorly ventilated rooms, they would be larger and healthier if they had a fresh supply of air coming in. If you spend a lot of time in your growing room, your plants will grow better because they will be using the carbon dioxide that you are exhaling around them. It is sometimes quite difficult to get a fresh supply of air in to your growing room because your room is usually hidden away in a secret corner of your house, possibly in the attic or basement. In this case, a fan will create some movement of air. It will also stimulate your plants into growing a healthier and sturdier stalk. Often times in an indoor environment, the stems of plants fail to become rigid because they don't have to cope with elements of wind and rain. To a degree, though, this is an advantage because the plant puts most of its energy into producing leaves and resin instead of stems.

The ideal temperature for the light hours is 68 to 78 degrees fahrenheit and for the dark hours there should be about a 15 degree drop in temperature. The growing room should be relatively dry if possible. What you want is a resinous coating on the leaves and to get the plant to do this, you must convince it that it needs the resinous coating on its leaves to protect itself from drying out. In an extremely humid room, the plants develop wide leaves and do not produce as much resin. You must take care not to let the temperature in a dry room become too hot, however, since the plant cannot assimilate water fast enough through its roots and its foliage will begin to brown out.

Top




Sexing

Since you control the light cycle in an indoor operation it is easy to sex the plants early and eliminate all the males. Just turn the lights down to 12/12 when the plants are eight inches high. Use a magnifying glass to examine the flowers and eliminate all the males.

The only way to tell the sex of a cannabis plant is after it has been flowering for at least two weeks. Examine the internodes, or the place where two stems meet. Two little white hairs in a "V" are a female flower, while strange-looking bunches of grape like flowers indicate a male. Make sure to cut the males as soon as they show their sex unless you want a batch of seeds with your female buds, in which case cut all the males except for the best one (you judge) and then cut it as soon as the little grapes (pollen sacks) start to pop open. The branches of these males can be placed in water and put in a sunny window. The pollen sacks will continue to pop open for several days and you can carefully collect an apply the pollen to just the females you want to seed. Remember that there is enough pollen in a single male flower to pollinate thousands of female flowers. If you grow only females the results will be sinsemilla (Spanish word for seedless or without seed.

Top




Watering

If you live near a clear mountain stream, you can skip this bit on the quality of water. Most of us are supplied water by the city and some cities add more chemicals to the water than others. They all add chlorine, however, in varying quantities. Humans over the years have learned to either get rid of it somehow or to live with it, but your marijuana plants won't have time to acquire a taste for it so you had better see that they don't have to. Chlorine will evaporate if you let the water stand for 24 hours in an open container. Letting the water stand for a day or two will serve a dual purpose: The water will come to room temperature during that period of time and you can avoid the nasty shock your plants suffer when you drench them with cold water. Always water with room temperature to lukewarm water. If your water has an excessive amount of chlorine in it, you may want to get some anti- chlorine drops at the local fish or pet store. The most important thing about watering is to do it thoroughly. You can water a plant in a three gallon container with as much as three quarts of water. The idea is to get the soil evenly moist all the way to the bottom of the pot. If you use a little water, even if you do it often, it seeps just a short way down into the soil and any roots below the moist soil will start to turn upwards toward the water. The second most important thing about watering is to see to it that the pot has good drainage. There should be some holes in the bottom so that any excess water will run out. If the pot won't drain, the excess water will accumulate in a pocket and rot the roots of the plant or simply make the soil sour or mildew. The soil, as we said earlier, must allow the water to drain evenly through it and must not become hard or packed. If you have made sure that the soil contains sand and pearlite, you shouldn't have drainage problems. To discover when to water, feel the soil with your finger. if you feel moisture in the soil, you can wait a day or two to water. The soil near the top of the pot is always drier than the soil further down. You can drown your plant just as easily as you can let it get too dry and it is more likely to survive a dry spell than it is to survive a torrential flood. Water the plants well when you water and don't water them at all when they don't need it.

Plants need water. All residential water supplies are treated with chlorine which is not good for plants. Evaporate the chlorine out of the water by leaving it in open containers such as milk jugs or barrels for 24 to 48 hours before using.

The proper way to water an established plant is to saturate the soil, then do not water again until the soil feels dry at the tip of your finger poked into the soil, and the container feels light. You can tell just by watching the plants. Experienced growers who are intimate with their plants can tell that they will need to be watered 2 or even 3 days before they do simply by looking at them. Lower leaves may lose their turgidity, and the whole plant, though seemingly unaffected, may actually seem to shrink. The moment they start to droop you have waited too long. Overwatering is a most common mistake. Usually, the plant is not growing satisfactorily due to another limiting factor, and the hapless cultivator tries to give it more and more water and/or fertilizer, essentially drowning the roots and killing the plant.

Top




Pruning

We have found that pruning is not always necessary. The reason one does it in the first place is to encourage secondary growth and to allow light to reach the immature leaves. Some strands of grass just naturally grow thick and bushy and if they are not clipped the sap moves in an uninterrupted flow right to the top of the plant where it produces flowers that are thick with resin. On the other hand, if your plants appear tall and spindly for their age at three weeks, they probably require a little trimming to ensure a nice full leafy plant. At three weeks of age your plant should have at least two sets of branches or four leaf clusters and a top. To prune the plant, simply slice the top off just about the place where two branches oppose each other. Use a razor blade in a straight cut. If you want to, you can root the top in some water and when the roots appear, plant the top in moist soil and it should grow into another plant. If you are going to root the top you should cut the end again, this time with a diagonal cut so as to expose more surface to the water or rooting solution. The advantage to taking cuttings from your plant is that it produces more tops. The tops have the resin, and that's the name of the game. Every time you cut off a top, the plant seeds out two more top branches at the base of the existing branches. Pruning also encourages the branches underneath to grow faster than they normally would without the top having been cut.

Plants that are regenerated, cloned and even grown from seed will need to be pruned at some point to encourage the plant to produce as much as possible and remain healthy. Pruning the lower limbs creates more air-flow under the plants in an indoor situation and creates cuttings for cloning. It also forces the plant's effort to the top limbs that get the most light, maximizing yields.
Plants that are regenerated need to have minor growth clipped so that the main regenerated growth will get all the plant's energy. This means that once the plant has started to regenerate lots of growth, the lower limbs that will be shaded or are not robust should go. The growth must be thinned on top branches such that only the most robust growth is allowed to remain.
Once nice aspect of regenerating plants is that some small buds left on the plant in anticipation of regeneration will not sprout new growth and may be collected for smoke. The plant may provide much smokable material if it is caught before all the old flowers dry up and die with the new vegetative growth occurring.
Try to trim a regenerated plant twice. Once as it is starting to regenerate, collect any bud that is not sprouting with new growth and smoke it. Then later, prune again to take lower clippings to clone and thin the upper growth so that larger buds will be produced.
If a regenerated plant is not pruned at all, the resulting plant is very stemmy, does not create large buds and the total yield will be significantly reduced.

Top




Harvesting

Well, now that you've grown your marijuana, you will want to cur it right so that it smokes clean and won't bite. You can avoid that "homegrown" taste of chlorophyll that sometimes makes one's fillings taste like they might be dissolving. We know of several methods of curing the marijuana so that it will have a mild flavor and a mellow rather than harsh smoke.

First, pull the plant up roots and all and hang it upside down for 24 hours. Then put each plant in a paper grocery bag with the top open for three or four days or until the leaves feel dry to the touch. Now strip the leaves off the stem and put them in a glass jar with a lid. Don't pack the leaves in tightly, you want air to reach all the leaves. The main danger in the curing process is mold. If the leaves are too damp when you put them into the jar, they will mold and since the mold will destroy the resins, mold will ruin your marijuana. you should check the jars every day by smelling them and if you smell an acrid aroma, take the weed out of the jar and spread it out on newspaper so that it can dry quickly. Another method is to uproot the plants and hang them upside down. You get some burlap bags damp and slip them up over the plants. Keep the bags damp and leave them in the sun for at least a week. Now put the plants in a paper bag for a few days until the weed is dry enough to smoke. Like many fine things in life, marijuana mellows out with age. The aging process tends to remove the chlorophyll taste.

Top




© 2011 Indoor Marijuana Seeds